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Variation is the spice of life or, in the case of evolution, variation

is the necessary material on which selection can act to enable

adaptation. Karyotypic variation in ploidy (the number of

homologous chromosome sets) and aneuploidy (imbalance in

the number of chromosomes) are fundamentally different than

other types of genomic variants. Karyotypic variation emerges

through different molecular mechanisms than other mutational

events, and unlike mutations that alter the genome at the base

pair level, rapid reversion to the wild type chromosome number

is often possible. Although karyotypic variation has long been

noted and discussed by biologists, interest in the importance

of karyotypic variants in evolutionary processes has spiked

in recent years, and much remains to be discovered about

how karyotypic variants are produced and subsequently

selected.
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Introduction
Fungal microbes have emerged as important taxa to study

the effect of karyotypic variation on phenotype and

fitness (reviewed in [1]). Ploidy variation exists among,

as well as within, fungal species and ploidy shifts continue

to emerge in surprising places. Variation in ploidy among

nuclei that share a common cytoplasm was recently

reported in Ashbya gossypii, an otherwise haploid organism

[2��]. Candida albicans, long considered an obligate dip-

loid, recently was found to generate haploids following

passage through a mouse model, and following exposure
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to the antifungal drug fluconazole [3�,4]. Similarly, rare

tetraploids have been sampled from clinical isolates of

C. albicans [5,6], and polyploid ‘titan’ cells were recently

identified in the typically haploid basidiomycete Crypto-
coccus neoformans [7,8] (reviewed in [9]). Aneuploid var-

iants also have been documented at appreciable

frequencies in many fungal taxa in a diversity of circum-

stances: within the Saccharomyces cerevisiae deletion col-

lection constructed by transformation [10], following drug

stress in C. albicans [11] and C. neoformans [12], in meiotic

spores of Cryptococcus lusitaniae [13] and through unisexual

mating in C. neoformans [14�]. Furthermore, it remains

possible that the true proportion of karyotypic variants is

even higher than currently appreciated, as variants are

rapidly eliminated ex vivo due to the growth conditions

typically used to propagate cultures in the laboratory.

Here we focus on karyotypic variants that arise mitotical-

ly, within a single organism, rather than those formed

through conventional means involving sexual conjugation

followed by meiotic reductive divisions. We first discuss

variations in whole genome ploidy level and then changes

due to aneuploidy, focusing on the mechanisms that

produced the variation and then on the degree to which

they provide a selective advantage under different growth

conditions.

Producing ploidy shifts
The mitotic mechanisms by which ploidy variants are

produced are dependent on the direction of change.

Increases occur through endoreplication, a process in

which the genome replicates, but the cell containing it

fails to complete mitosis and cytokinesis. Decreases in

ploidy occur via a cryptic chromosome loss mechanism,

often, if not always, through aneuploid intermediates

[3�,15,16]. There remains no known mitotic program to

undertake a full euploid chromosome set reduction (‘con-

certed chromosome loss’ [17]), yet the rate at which some

reductions in ploidy have been documented in the labo-

ratory indicates that it cannot be attributed solely to

selection acting on individual chromosome loss events.

Ploidy transitions frequently occur within relatively short

timescales; they are often detected following fitness assay

tests (24–72 hours) and short-term experimental evolu-

tion passaging (<200 generations). Convergence towards

the historical ploidy level has now been documented in S.
cerevisiae [15,18,19�], C. albicans [3�,16], C. tropicalis [20�],
and C. neoformans (Gerstein, Fu et al., in review). The

force behind this ‘ploidy-drive’ remains cryptic, as there

have been few identified fitness differences between
www.sciencedirect.com
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ploidy-variant individuals sampled from the same popu-

lation [21]. The presence of ploidy variants and the rate of

ploidy transition is strongly influenced by the environ-

ment [2��,15,17], yet the link(s) between genotype, phe-

notype and fitness remain murky.

Does ploidy state provide a selective
advantage?
An ongoing topic of debate in evolutionary biology is why

one ploidy level should be beneficial over another. As all

genomes are subjected to the same basic processes, why is

there not a singular ‘best’ ploidy level employed across the

tree of life? This question has been addressed using fungal

microbes that can be manipulated to generate isogenic

ploidy series, thereby distinguishing ploidy from differences

in genetic background. Predictions generally fall into two

categories: short-term influences of ploidy on ecological

tolerance and survival, mediated through physiological dif-

ferences; and long-term (evolutionary) influences  of ploidy

on the rate of adaptation, mediated through the genetic basis

of beneficial mutations (discussed in detail in [22]).

Physiologically, ploidy is frequently correlated with differ-

ences in the cell surface area:volume (SA:V) ratio, which

decreases as ploidy and cell size increase. Lower ploidy

(and a higher SA:V ratio) is predicted to be beneficial under

nutrient limitation, yet detrimental when toxins are pres-

ent in the environment. Overall, these predictions received

only mixed support from empirical tests, as highlighted by

Zorgo et al. [23��], who compared many paired haploid and

diploid strains of S. cerevisiae and S. paradoxus. They found

that although ploidy � environment interactions were fre-

quent and often evolutionarily conserved, there was not an

overall growth advantage for diploids in toxins, or for haploids

under nutrient limitation or environmental stress. Thus, no

single catch-all explanation accounts for why one ploidy level

is ecologically beneficial over another. This result may not be

satisfying, but it likely reflects the reality of biology: a large

number of factors usually influence growth and survival.

Recent technological advances, in particular flow cyto-

metry coupled with next generation sequencing, now

enable researchers to track the genetic basis of adaptation

and to test the influence of ploidy on the mutations

selected during adaptation. When beneficial mutations

arise in diploids or polyploid individuals, their effects are

often at least partially masked by the wild-type allele(s)

that remain. Thus, haploids may be able to acquire a

greater diversity of mutations (as in [24]) or to access

different types of mutations. This was recently shown for

lines adapting to nutrient limitation: beneficial loss-of-

function mutations, which are often recessive, arose more

frequently in haploid lines, while diploid lines were

enriched for mutations that increase gene expression

(and are likely at least partially expressed in heterozygous

form, [25]). Thus haploids, which fully express all bene-

ficial mutations, might be expected to adapt faster than
www.sciencedirect.com 
diploids. However, depending on the environmental

challenge, this may [26], or may not [19�], be the case.

An increase in ploidy also increases the mutation rate

[19�], and, if selection is strong, loss of heterozygosity can

rapidly convert heterozygous mutations to a homozygous

state [27�], thereby reducing the difference in the rate of

adaptation between haploids (where the effect of reces-

sive beneficial mutations are immediately felt) and higher

ploidy levels. Finally, mutations may also have different

effect sizes in different ploidy backgrounds, even when

present in homozygous form [28]. Consistent with this idea,

a recent genome-wide tour-de-force by Dunham and co-

workers distinguished the effects of aneuploidy from those

of mutations acquired in aneuploid strains using a clever

system to generate extra copies of chromosome arm seg-

ments. They found that aneuploidies could provide adap-

tive advantages under specific environmental conditions

and that the advantages were clearly related to the genes

included on the aneuploid segments [29��]. Taken together,

it appears that the relationship between ploidy and adapta-

tion depends heavily on the environment and the particulars

of the available mutations.

Slipping into (and out of) aneuploidy
Aneuploidy arises through nondisjunction of single, or a

few, chromosomes, and provides a fundamentally differ-

ent class of adaptive genomic change than point muta-

tions (Figure 1). As chromosome nondisjunction occurs

several orders of magnitude more frequently than point

mutations, and aneuploidy is more prevalent than shorter

range copy number variations, small insertions, or small

deletions [30�], aneuploidy provides a rapid mechanism to

generate diversity upon which selection can act

(Figure 1b). Aneuploidy may also act as a stepping-stone

to other types of genic mutations if the environmental

stress is maintained for many generations. Similar to

changes in ploidy, aneuploidy may increase the rate that

beneficial mutations can arise within the genome

(Figure 1c), either on the chromosome that is aneuploid,

or through a general increase in genomic instability. If

additional beneficial point mutations are then acquired,

selection to maintain the aneuploidy will be lost. When

the environmental stress is removed, aneuploidy also can

be lost more rapidly than other genomic mutations, via a

chromosome non-disjunction event (Figure 1d). Thus,

aneuploidy provides a highly flexible mechanism to rap-

idly adapt to a changing environment.

Chromosomes in aneuploid cells are more prone to non-

disjunction events than are chromosomes in euploid cells

[16,31,32]. Thus, once the initial aneuploidy is present the

rate with which additional aneuploidy events appear is

increased. The rate of aneuploid formation also increases

during stress exposure. Within the first 12–24 hours of drug

exposure, over 20% of C. albicans cells undergo unusual

mitotic divisions that yield tetraploids/heterokaryons that

then frequently give rise to aneuploids and, rarely, haploids
Current Opinion in Microbiology 2015, 26:130–136
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Figure 1
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Aneuploidy can be rapidly selected for or against in permissive

environments (blue background) and stressful environments (pink

background). (a) In a permissive environment the wild-type genotype

is more fit (occupies a higher peak on the landscape) than either an

aneuploid strain or a mutant strain. (b) When in a stress environment,

the wild-type genotype is no longer the most fit. Multiple types of

mutations can confer a fitness advantage, including a particular
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[4,33��]. Hsp90 may also play an important role in aneu-

ploid formation under stress conditions, as higher chromo-

some non-disjunction rates have been observed under

stressors that demand increased levels of Hsp90 and that

compromise kinetochore assembly [34]. Thus, extreme

stress can lead to unconventional mitotic mechanisms of

ploidy change under strong selective pressure that inhibits

the growth of the original parent [33��]. Taken together, the

appearance of aneuploids appears to be a natural conse-

quence of cell cycle progression defects caused by stress

itself, reminiscent of fitness associated recombination [35],

stress-induced mutagenesis in bacteria (reviewed in [36])

and stress-induced loss of heterozygosity in yeasts [37].

Aneuploidy and stress: is the benefit worth the
cost?
Aneuploidy has the potential to affect phenotypic varia-

tion on both a general and specific level. A general

signature of aneuploidy that is independent of the specific

chromosome(s) involved has been proposed to involve

slower progression through G1-phase [38�,39] and elevat-

ed levels of proteotoxic stress relative to euploids [40].

Many aneuploid S. cerevisiae strains exhibit this feature,

albeit to different degrees, but some do not [38�]. Altera-

tions in mRNA and protein levels generally correspond to

the alterations in DNA copy number [41–44], though this

effect may be buffered for certain genes and/or strain

backgrounds [45] or be mitigated by post-translational

regulatory effects on unlinked genes and their products

[46]. Specific phenotypes linked to extra gene copies are

often evident, though the effect of aneuploidy may be

realized by the combined influence of multiple copy

number changes [29��,47]. While the majority of possible

aneuploidies likely have deleterious phenotypes

(reviewed in [48]), selection should efficiently eliminate

these deleterious aneuploidies from large populations,

thereby enabling beneficial aneuploidies to remain.

If a favourable genotype can be acquired through aneu-

ploidy, this may be expected to be a frequent route to

adaptation, due to the higher rate of aneuploid formation

relative to other types of mutations. Indeed, a high rate of

beneficial aneuploidy has been identified under glucose

limitation [49], drug stress [50], copper adaptation [51],

adaptation to sulphate limitation [18,29��] and as a solution

for gal7D strains that require a beneficial mutation to grow

in galactose [52��]. Furthermore, aneuploidy appears to be
aneuploidy and a genic mutation. The width of the arrows indicates

the mutational frequency; aneuploidy arises more frequently than any

particular genic mutation. (c) If the stress environment is maintained

over time, aneuploidy can act as a bridge to genic mutations. The

mutation rate is increased in aneuploids, due to the extra

chromosome copy, and the aneuploidy can be easily lost once a

beneficial mutation arises. (d) If the environment returns to being

permissive, reversion of an aneuploid chromosome via chromosome

gain or loss can occur with high frequency. Reversion of genic

mutations is a much rarer event.
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a more common event in diploids than in haploids [18],

perhaps because the deleterious effects of an extra gene

copy are less dramatic for diploids than for haploids. The

propensity for specific aneuploidies to be selected as a result

of specific environmental pressures has been exploited to

measure chromosome gain rates in different genetic back-

grounds [53]. The reliable production of aneuploids can also

be exploited to set an ‘evolutionary trap’, by use of a drug

that first enriches the population for a particular aneuploidy

and a second drug that specifically inhibits the growth of

cells that carry this aneuploidy [54��]. As a general principle,

aneuploidies are likely to incur a cost in non-selective

environments, with the magnitude of this cost (and thus

the stability of the aneuploidy) dependent on interaction

between the environment, genes that are present in the

aneuploidy, and the genetic background [44,51,55,56].

The degree of stress, independent of the environment, may

also play a role in selecting for or against aneuplodies.

Indeed, the degree to which fitness varied among otherwise

isogenic aneuploid strains of S. cerevisiae scaled with the

degree of stress across a range of conditions, suggesting that

there may be a functional relationship between the degree of

stress applied and the degree of phenotypic variation (in-

cluding beneficial variation) [54��]. This has important

implications for therapeutic strategies, as it suggests that

more severe drug treatments may stimulate more population

diversity and may lead to progeny with a higher potential to

adapt to the drug. The reverse may also be true, however, as

aneuploidy may be seen less frequently under stressful

conditions in multinucleate filamentous fungi [2��].

As a result of both the general cost of aneuploidy and the

specific chromosome � environment trade-offs, aneu-

ploidy is likely to be a temporary evolutionary solution,

until more stable and specific genetic solutions arise. For

example, S. cerevisiae cells that evolved evolved under

mild temperature stress for 450 generations first acquired

an extra first acquired an extra copy of Chr3, which

facilitated faster growth at elevated temperature [57��].
Later, following further passage under elevated temper-

ature, the aneuploidy was lost. A phenomenon reminis-

cent of this appeared in a series of C. albicans clinical

isolates from patients, where Chr5 aneuploidy often

preceded the emergence of highly drug-resistant variants

[1,58��]. As aneuploidy is easily reversible, it may also

function as a bet-hedging mechanism for toggling be-

tween two phenotypic states, as was seen for colony

morphology phenotypes of S. cerevisiae isolates [2��,59�].

Conclusion
We propose that karyotypic variation can be both a non-

selected cause and an adaptive response to stress that

enables phenotypic variation to appear rapidly within

populations. This is demonstrated by the response of

C. albicans in the presence of the antifungal drug flucona-

zole: aneuploidy arises as a consequence of exposure to
www.sciencedirect.com 
the drug, which stimulates the formation of multinucle-

ate/tetraploid cells that produce aneuploid cells at a high

rate [3�,4,33��]. Specific forms of aneuploidy are benefi-

cial under fluconazole stress, and thus are maintained as a

result of selection [12,60]. Importantly, karyotypic var-

iants tend to be easily reversible, and thus under unstable

environmental conditions they can rapidly appear and

disappear from populations.

Karyotypic variants do not always incur a high fitness cost

and relatively stable variants have been found during short

and long term laboratory experimental evolution experi-

ments, in a number of series of isolates from patients, and in

nature [18,29��,44,61–63]. However, due to their transient

nature, sampling results and clinical sampling practices

may under-estimate the true number of karyotypic var-

iants. Similarly, in laboratory evolution experiments we

likely miss a large degree of variation by focusing efforts

primarily on the last, usually arbitrary, time-point. Finally,

it is important to note that the majority of evolution

experiments with S. cerevisiae have used haploid isolates

that can undergo only chromosome gains, but not chromo-

some losses, and that may be less tolerant of additional

chromosome copies than diploids. Not only is the appear-

ance of aneuploidy likely to be more frequent in diploids or

polyploids than in haploids [18], but aneuploidy well may

have different fitness consequences as well [19�].

In conclusion, ploidy and aneuploidy variants have the

potential to arise frequently within populations, and may

facilitate rapid adaptation. The emerging view is that the

influence of aneuploidy is context dependent, and the

fitness consequences depend on all aspects of a given

circumstance: the environment, the genetic background,

and the genes that are present in aneuploidy.

We apologize to the authors of many important studies

whose work we did not have the space to discuss due to

the concise nature of this article format.
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