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ABSTRACT The importance of within-species diversity in determining the evolutionary
potential of a population to evolve drug resistance or tolerance is not well understood,
including in eukaryotic pathogens. To examine the influence of genetic background, we
evolved replicates of 20 different clinical isolates of Candida albicans, a human fungal
pathogen, in fluconazole, the commonly used antifungal drug. The isolates hailed from
the major C. albicans clades and had different initial levels of drug resistance and toler-
ance to the drug. The majority of replicates rapidly increased in fitness in the evolution-
ary environment, with the degree of improvement inversely correlated with parental
strain fitness in the drug. Improvement was largely restricted to up to the evolutionary
level of drug: only 4% of the evolved replicates increased resistance (MIC) above the
evolutionary level of drug. Prevalent changes were altered levels of drug tolerance (slow
growth of a subpopulation of cells at drug concentrations above the MIC) and increased
diversity of genome size. The prevalence and predominant direction of these changes
differed in a strain-specific manner, but neither correlated directly with parental fitness
or improvement in fitness. Rather, low parental strain fitness was correlated with high
levels of heterogeneity in fitness, tolerance, and genome size among evolved replicates.
Thus, parental strain background is an important determinant in mean improvement to
the evolutionary environment as well as the diversity of evolved phenotypes, and the
range of possible responses of a pathogen to an antimicrobial drug cannot be captured
by in-depth study of a single strain background.

IMPORTANCE Antimicrobial resistance is an evolutionary phenomenon with clinical im-
plications. We tested how replicates from diverse strains of Candida albicans, a prevalent
human fungal pathogen, evolve in the commonly prescribed antifungal drug flucona-
zole. Replicates on average increased in fitness in the level of drug they were evolved
to, with the least fit parental strains improving the most. Very few replicates increased
resistance above the drug level they were evolved in. Notably, many replicates increased
in genome size and changed in drug tolerance (a drug response where a subpopulation
of cells grow slowly in high levels of drug), and variability among replicates in fitness,
tolerance, and genome size was higher in strains that initially were more sensitive to the
drug. Genetic background influenced the average degree of adaptation and the evolved
variability of many phenotypes, highlighting that different strains from the same species
may respond and adapt very differently during adaptation.
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In eukaryotic microbes, the responses to severe stresses, including exposure to
antimicrobial drugs, can occur through genetic changes that arise within susceptible

microbial populations and spread via conventional evolutionary processes or via phys-
iological responses that modulate the ability of cells to survive and grow in the
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presence of the stress. Drug resistance, measured as reduced susceptibility, can be
assessed as a higher MIC. For fungal pathogens, broth microdilution assays, Etest strips,
or disk diffusion assays are assessed after growth in a set range of drug concentrations
(1). Antifungal drug tolerance, a property distinct from drug resistance (2, 3), is the
ability of some cells in a population to grow slowly in the presence of a drug at
concentrations above the MIC. In tolerant strains, the subpopulation of cells that grow
(generally from 10 to 90% of cells, depending on the strain) is usually evident when
growth is assessed after an extended time frame in the drug (reviewed in reference 4).
Hence, tolerant strains have susceptible MIC levels (5, 6) and have often been termed
“resistant” in assays in which they are allowed to grow for longer periods of time and/or
in spot assays that measure partial growth. Clinically, the failure to clear infections is
more likely when the infecting strain is drug resistant. High levels of drug tolerance may
influence infection clearance (3, 7), although more studies that use quantitative criteria
to definitively measure tolerance levels and distinguish tolerant from resistant isolates
are needed (reviewed in reference 4).

Factors that influence the change in antifungal resistance and tolerance levels in
pathogenic fungi have not been well elucidated. Unlike prokaryotes, which often
acquire new traits horizontally via plasmids, eukaryotic pathogens primarily acquire
new traits vertically via de novo mutations, chromosome-scale changes in copy number
(ploidy) or allele frequency, and recombination events. Changes in either genome-wide
ploidy (the number of sets of homologous chromosomes) or aneuploidy (the gain or
loss of individual chromosomes) also arise often in laboratory populations subjected to
stress (8–10) or passaged through mice (11, 12). Ploidy and aneuploidy variation have
also been found in some clinical isolates of Candida albicans, Candida glabrata, and
Saccharomyces cerevisiae (13, 14) as well as in environmental isolates of S. cerevisiae
(15, 16).

Changes in ploidy arise more frequently than point mutations (17). In addition, they
are especially prevalent in strains exposed to azole drug stress (18–22). Indeed, expo-
sure to fluconazole promotes karyotypic change by inducing unconventional cell cycle
events in a subpopulation of cells (23, 24). Hence, fluconazole can both drive and select
for karyotypic variation within and among populations. Furthermore, the frequency of
aneuploidy among clinical isolates may be underestimated, as strain isolation methods
(i.e., multiple growth cycles in rich medium) may impose a fitness cost that selects
against aneuploid isolates. A mechanistic link between drug resistance and specific
aneuploidies exists in multiple pathogenic fungal species (e.g., C. albicans [22, 25–28]
and Cryptococcus neoformans [29, 30]; suggested in Candida auris [31, 32]). Because
fluconazole tolerance and drug resistance are distinct and tolerance is sensitive to
inhibitors that do not affect resistance (2, 3), it follows that antifungal tolerance likely
evolves via a different subset of genes than resistance, although it is also possible that
there is overlap between genes involved in tolerance and resistance.

The importance of genetic background in the link between genotype and pheno-
type for de novo-acquired mutations is becoming appreciated in both laboratory and
natural settings (33–35 and references within). For example, the phenotype of deleted
or repressed genes can vary significantly in different backgrounds (36–38). Moreover,
closely related strains can differ in the classification of genes that are essential for
viability under a specific growth condition (39). The same is true of mutations classified
as beneficial in one strain background (including different mutations in the same gene
[40]), which can be neutral or deleterious in other backgrounds (e.g., references 41 to
44). Different strain backgrounds also may exhibit different mutation rates, thereby
affecting the frequency with which genetic variation arises (45, 46). Thus, the genetic
background of a population likely influences the mutations available for adaptation and
hence the trajectory of evolution. Furthermore, the constraints on variation in the
degree of intra- and interpopulation heterogeneity are likely to differ in different
genetic backgrounds.

Here, we explored the interplay between genetic background, fitness, drug resis-
tance and drug tolerance, and karyotypic variation by following the evolutionary
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trajectories of replicates from 20 diverse C. albicans strains for 100 generations of
evolution in 1 �g/ml of fluconazole. We found that the majority of replicates acquired
the ability to grow more rapidly in the evolutionary level of drug, with the degree of
improvement inversely correlated with parental strain fitness. While very few replicates
from any background acquired clinical levels of drug resistance, changes in tolerance
and ploidy were prevalent, especially in strains with low parental fitness. We find that
drug tolerance is an evolvable phenotype and one that changed in the majority of
strains. Importantly, evolved variation in fitness, tolerance, and genome size among
replicate evolved lines is inversely correlated with parental strain fitness. Thus, initial
strain fitness provides a link between strain genetic background and the acquisition of
phenotypic and genotypic diversity among replicate populations adapting to flucona-
zole.

RESULTS

We evolved replicate lines from 20 clinical strains of C. albicans that span the
phylogenetic diversity of the species (47) and vary in mating-type zygosity, geographic
origin, and site of isolation (Table 1). Twelve replicates of each of the 20 strains were
evolved in parallel in fluconazole (yeast extract-peptone-dextrose [YPD] � 1 �g/ml FLC)
for 100 generations (20 strains � 12 replicates per strain � 240 replicates), by serial
passaging at 1:1,000 dilution every 72 h for 10 passages. We use the term “evolved” to
indicate these 240 replicates and “parental” to refer to the clinical strains prior to the
evolution experiment we conducted. Fitness was measured as optical density (OD) in
the evolutionary level of fluconazole (1 �g/ml FLC) for parental and evolved popula-
tions at 24 and 72 h. We also measured drug response phenotypes for parental and
evolved strains from broth microdilution assays. Resistance to fluconazole was mea-
sured as MIC50, the concentration of drug at which growth is inhibited by at least 50%
relative to growth in a drug-free environment, after 24 h of growth. Tolerance to

TABLE 1 Strains used in this studyh

Strain no. Strain name Clade
MTL genotype, patient status (if known),
site of isolation, country of origin

Parental fitness
Parental
resistance (24 h)

Parental
tolerance (72 h)24-h OD 72-h OD

A1 L26a 1 a/a, vaginitis, vagina, USA 1.6 1.8 4 0.26
A2 P87a 4 a/a, HIV, oral, South Africa 1.1 1.3 1 0.10
A3 GC75a 4 �/�, healthy, oral, South Africa 0.3 0.7 0.0125 0.27
A4 P78048a 1 �/�, bloodstream, Canada 0.5 1.0 0.5 0.22
A5 P57072a 2 �/�, bloodstream, USA 1.3 1.7 4 0.91
A6 P34048a 3 a/�, bloodstream, Turkey 1.1 1.4 1 0.29
A7 P37037a 1 a/�, healthy, oral, USA 1.0 1.5 1 0.37
A8 P75016a 4 a/�, bloodstream, Israel 0.7 1.2 0.5 0.32
A9 P75063a 4 a/�, bloodstream, France 0.4 0.7 0.0125 0.31
A10 P76055a 2 a/�, bloodstream, USA 0.8 1.5 0.0125 0.81
A11 P78042a 3 a/�, bloodstream, USA 0.3 0.6 0.0125 0.30
A12 T101b 3 a/a, oropharynx, Canada 1.2 1.7 32 0.49
A13 OKP90c 2 a/a, healthy, oral, South Africa 0.1 1.2 0.0125 0.44
A14 AM2003.089b 2 a/�, oropharynx, UK 0.5 1.2 0.0125 0.58
A15 AM2003.0165b 2 �/�, bloodstream, UK 0.3 1.2 0.0125 0.35
A16 AM2003.0069b 3 a/�, vagina, UK 0.6 1.4 0.0125 0.5
A17 SC5314d 1 a/�, bloodstream, USA 0.2 0.5 0.0125 0.18
A18 FH1e 3 a/�, marrow transplant, rectal, USA 1.6 1.7 4 0.65
A19 DSY294f 11 a/�, HIV, oral, France 0.7 1.4 0.0125 0.37
A20 T118g 1 a/�, HIV, oral, Canada 0.9 1.7 4 0.41
aOriginal reference, 79.
bOriginal reference, 73.
cOriginal reference, 80.
dOriginal reference, 81.
eOriginal reference, 82.
fOriginal reference, 83.
gOriginal reference, 84.
hFitness was measured as the optical density (A600) in YPD � 1 �g/ml FLC, the evolutionary drug environment. Drug resistance was measured as MIC50 in �g/ml at
30°C by broth microdilution assay. Tolerance was measured as the average optical density at 72 h in the measured drug concentrations of drug above the MIC
divided by optical density in the lowest measured drug level.
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fluconazole was calculated as the ratio of growth at drug concentrations above the MIC
relative to growth in a very low level of drug after 72 h (the transfer time). Although
previous work measured tolerance at 48 h, we found that the two time points gave very
similar results. Parental optical densities at 24 h and 72 h were correlated (Spearman’s
rank correlation, S � 158, P value � 2.2e�16, rho � 0.88), while parental resistance and
tolerance were not (Spearman’s rank correlation, S � 1141.8, P value � 0.55) (Table 1).

Adaptation is influenced by strain background. The majority of replicates
evolved significantly higher fitness in the evolutionary drug environment after only 100
generations of adaptation (fitness measured at either 24 or 72 h) (Fig. 1). The major
exception was replicates from A12, the strain with the highest parental MIC50, which
evolved significantly lower 24-h fitness and had no change in 72-h fitness. Four strains
with initial MICs of �1 (A2, A9, A10, and A14) also did not acquire improved average
fitness at 24 h, though all had significantly increased fitness at 72 h, on average
(significance determined as appropriate by parametric or nonparametric t tests; meth-
ods and detailed results in Table S1 in the supplemental material).

Parental strain fitness significantly influenced both the mean fitness improvement
after 100 generations and the variability in fitness improvement among the replicates;
neither mating type nor clade had a significant effect on these parameters (Fig. 2)
(analysis of variance [ANOVA]; mean improvement at 24 h: F1,13 � 7.99, P � 0.014; clade,
F4,13 � 0.64, P � 0.64; MAT zygosity, F1,13 � 0.27, P � 0.61; variability at 24 h: F1,13 � 40.94,
P � 0.0001; clade, F4,13 � 0.82, P � 0.54; MAT zygosity, F1,13 � 2.22, P � 0.16; mean
improvement at 72 h: F1,13 � 158.73, P � 0.0001; clade, F4,13 � 1.97, P � 0.16; MAT
zygosity, F1,13 � 0.25, P � 0.63; variability at 72 h: F1,13 � 6.353, P � 0.026; clade,
F4,13 � 1.01, P � 0.44; MAT zygosity, F1,13 � 1.13, P � 0.31). Additional aspects of strain
background that are not accounted for in these models also contributed to evolved
fitness, as can be visualized from the deviation of points from the correlation line of fit
in Fig. 2. The variance among evolved replicates from each strain reflects stochasticity
in the evolutionary process. Variance in evolved fitness and the degree of fitness

FIG 1 The majority of evolved replicates improved growth in the evolutionary environment after 100
generations of evolution. Fitness was measured as growth (optical density) in YPD � 1 �g/ml flucona-
zole, the evolutionary environment after 24 h (top) and 72 h (bottom). Strains are ordered by parental
fitness in the evolutionary environment at 72 h. Parental fitness (the median growth among 12 parental
replicates) is indicated for each strain by a gray bar. Each colored point represents one of 12 evolved
replicates, while the colored bars indicate median evolved growth for visual comparison to parental
growth.
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improvement were inversely correlated: strains that were least fit initially and that
increased in growth the most on average also had the most variability among replicates
from the same strain background (Spearman’s rank correlation test; 24 h, S � 694,
P � 0.035, rho � 0.48; 72 h, S � 476, P � 0.003, rho � 0.64). Overall, strain background
influenced both the degree of growth improvement and the variability in improvement
among replicates, both mediated in part (but not entirely) by the parental growth
ability of the strain in the evolutionary environment.

Increases in drug resistance to 1 �g/ml were common but beyond 1 �g/ml
were rare. One hundred ten replicates (76%) derived from the 12 backgrounds that
had a parental MIC50 below 1 �g/ml evolved to have an MIC50 of 1 �g/ml within the
100-generation experiment (Fig. 3A, left panel). Selection for increased resistance was
predominantly limited to the evolutionary drug level: only six replicates (4%) from four
of these strains evolved a higher MIC50, and none of the replicates from the three
strains with parental MIC50s equal to 1 �g/ml changed in MIC50 (Fig. 3A, middle).
Replicates from the five strains with parental MIC50 above 1 �g/ml exhibited diverse
responses (Fig. 3A, right panel): in three strain backgrounds (A1, A18, and A12), all
replicates retained the parental MIC50; for a single strain (A20), all replicates decreased
to a MIC50 of 1 �g/ml; replicates from the fifth strain (A5) exhibited variable outcomes
(four increased, four decreased, and four were unchanged in their MIC50). In total, only
10 replicates from five strain backgrounds increased in MIC50 beyond the evolutionary
level of the drug (Fig. 3A and Fig. S1). No clear factor was associated with the
appearance of resistance to drug above the evolutionary level: these events were
spread across the major clades and were not associated with mating locus (three have
a homozygous mating locus, two are heterozygous). Combined, this suggests that

FIG 2 Significant association between parental fitness and change in mean fitness (upper graphs) and
replicate variability (lower graphs). Fitness was measured as optical density in YPD � 1 �g/ml fluconazole
after 24 h (left panels) and 72 h (right panels). The colors are as in Fig. 1, based on parental fitness at 72
h (low parental fitness � yellow, high parental fitness � purple). The regression line is for visualization
purposes to illustrate the one-way relationship between parental fitness and change in fitness or change
in variability, which was significant (P � 0.05) in multiway models that also take into account clade and
mating locus (P � 0.05 in all cases; see text for details).
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the majority of selected mutations confer a narrow benefit up to, but not exceeding,
the evolutionary level of the drug.

Changes in drug tolerance were common. Changes in tolerance were prevalent
among evolved replicates (Fig. 3B; Fig. S2). The overall picture is similar regardless of
the time at which tolerance was measured (48 or 72 h; Fig. S2). Consistent with a
previous study examination (3), the magnitude of tolerance change increased sharply
between 24 and 48 h of drug exposure (Fig. S2).

Approximately 75% of the evolved replicates changed tolerance level: 55 replicates
from 15 strain backgrounds increased, 122 replicates from 19 strain backgrounds
decreased. The proportion of replicates within a strain that increased or decreased in
tolerance varied considerably among backgrounds (Fig. 3B). Parental strain fitness
influenced the degree of stochasticity of tolerance among evolved replicates, similar to
the variation in evolved fitness, variation in evolved tolerance among replicates was
significantly and negatively correlated with initial fitness (Spearman’s rank correlation,
fitness measured at 24 h, S � 2,226, P value � 0.002, rho � �0.67; 72 h, S � 1,986, P
value � 0.029, rho � �0.49). These results are consistent with the idea that genetic
background, mediated in part by parental fitness, acts not only on evolved trait means
but also on evolved trait variance.

If we consider each replicate independently, there was no association between
change in tolerance and change in fitness (linear mixed-effect model; change in fitness,
F1,132.5 � 0.03, P � 0.87; MAT zygosity, F1,18.8 � 0.65, P � 0.43; clade, F4,19.1 � 1.99,
P � 0.13). Looking at evolved replicates within each strain, a significant negative
correlation between change in tolerance and change in fitness was found only for three
strain backgrounds (A13, A14, and A19) (Fig. S4).

FIG 3 Evolved variation in clinical resistance and tolerance. Strains are arranged on the x axis by parental
MIC, with each panel separating the three MIC-based classes of strains. (A) The majority of evolved
replicates did not acquire clinical resistance. Clinical drug resistance was measured as MIC50 using broth
microdilution assays (1). The black lines indicate parental MIC50s. (B) Tolerance was variable among the
replicates. Tolerance was measured as the average growth observed in supra-MIC levels of fluconazole
normalized to the growth in a very low level of drug after 72 h. The black lines indicate the range of
tolerance values measured among parental replicates. Each point represents an individually evolved
replicate line, colored as in Fig. 1, based on fitness in the evolutionary environment.
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Genome size changes are pervasive. Exposure to fluconazole is known to induce
the formation of tetraploid and, subsequently, aneuploid cells in Candida albicans (24);
specific aneuploidies can provide a selective advantage under drug stress (22, 25, 48).
Here, we estimated genome size by flow cytometry and found that evolved replicates
underwent a significant increase in median genome size across the majority of strain
backgrounds (Fig. 4a; Table 2). The three exceptions were A12, the strain that had the
highest initial MIC50, and A4 and A9, strains with initial MIC50 values of �1 �g/ml. In
some cases, multiple subpopulations with different genome sizes were observed (see
Materials and Methods); for analysis, only values from the largest subpopulations were
used (i.e., the most prominent peak in the flow trace), which underestimates the degree
of genome size diversity in the population. Looking at A4 and A9, nondiploid sub-

FIG 4 Genome size and variation in genome size increased after evolution to low fluconazole. (a and b) Median genome size (a) and coefficient of variation
(CV; i.e., variability among replicates) (b) in each strain background. A dashed line indicates a nonsignificant change between parental and evolved replicates.
(c) Flow cytometry traces of each replicate evolved line, ordered and grouped by parental MIC50. Box color indicates parental fitness in the evolutionary
environment.

Genetic Background Influences Evolutionary Response

May/June 2020 Volume 5 Issue 3 e00480-20 msphere.asm.org 7

 on July 8, 2020 by guest
http://m

sphere.asm
.org/

D
ow

nloaded from
 

https://msphere.asm.org
http://msphere.asm.org/


populations are observed for some replicates (Fig. 4c; Fig. S5); thus, only one strain
background (A12, the strain with the highest parental MIC) had no replicates with a
significant deviation from diploidy.

The coefficient of variance for ploidy level, a measure of variability among replicates,
also increased for the majority of strains (Fig. 4b). Thus, genome size variation among
replicates increased over time in drug, as expected if the drug induced ploidy shifts and
if evolved replicates acquired different final numbers of chromosomes. Importantly, the
least ploidy variation was seen with replicates evolved from the five parental strain
backgrounds that had parental MIC50 levels above the evolutionary drug concentration
(Fig. 4c, right panels) and thus would be expected to be less sensitive to the drug stress
used. When these five strains were removed from the analysis, median evolved genome
size was not correlated with parental fitness in fluconazole (Pearson’s correlation, 24 h,
t13 � �0.30, P � 0.84; 72 h, t13 � �0.22, P � 0.83), nor with the mean fitness change
in low drug (Spearman’s rank correlation, fitness at 24 h, S � 541.19, P � 0.45; 72 h,
S � 953.4, P � 0.12). Genome size variation was thus extremely prevalent and equally
likely among evolved replicates from strain backgrounds with parental MICs at or below
the evolutionary level of drug.

These median numbers, however, obscure the tremendous variation in genome size
observed among evolved replicates (Fig. S5). Looking at replicates from the 15 strains
with parental MIC50s of �1, final genome size was not significantly correlated with any
of the predictor variables that we tested (change in fitness, F1,46.4 � 0.005, P � 0.95;
clade, F4,9.2 � 0.94, P � 0.48; MAT zygosity, F1,8.7 � 0.002, P � 0.97). There was similarly
no correlation between evolved genome size and change in fitness within replicates
from any strain background (Fig. S6). A14 was the only strain background with a
significant negative correlation between change in tolerance and evolved genome size
(Fig. S7).

The variance in evolved genome size followed a similar pattern as variance in
evolved tolerance: a significant negative correlation with parental fitness at 24 h but
not at 72 h (Spearman rank correlation, 24-h fitness, S � 2,076, P � 0.01, rho � �0.56;
72-h fitness, S � 1,908, P � 0.05692, rho � �0.43) and a positive correlation with the
variance in fitness improvement (24 h, S � 362, P � 0.0004, rho � 0.73; 72 h, S � 440,
P � 0.002, rho � 0.67). Accordingly, variance in evolved genome size was also signifi-
cantly correlated with variance in evolved tolerance (S � 538, P value � 0.007,
rho � 0.60). There was no direct link between evolved genome size and either fitness
improvement or change in tolerance among replicates or strain backgrounds. However,

TABLE 2 Welch two-sample t tests to compare parental and evolved genome size

Strain Statistic

A1 t20.6 � 11.70, P � 0.0001
A2 t11.2 � 5.34, P � 0.002
A3 t11.1 � 5.69, P � 0.0001
A4 t11.4 � 1.91, P � 0.08
A5 t20.14 � 18.07, P � 0.0001
A6 t11.1 � 3.82, P � 0.003
A7 t11.1 � 2.80, P � 0.017
A8 t11.1 � 2.80, P � 0.017
A9 t11.2 � 0.88, P � 0.40
A10 t11.4 � 3.31, P � 0.007
A11 t11.5 � 5.24, P � 0.0002
A12 t18.8 � 0.71, P � 0.49
A13 t11.1 � 5.46, P � 0.0002
A14 t11.1 � 4.10, P � 0.002
A15 t11.1 � 2.79, P � 0.018
A16 t11.3 � 4.17, P � 0.0015
A17 t11.1 � 2.94, P � 0.013
A18 t18.4 � 2.98, P � 0.008
A19 t11.4 � 2.93, P � 0.013
A20 t11.5 � 5.91, P � 0.0001
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the variability among evolved replicates is consistently larger in some strain back-
grounds than others, regardless of the trait we measured (evolved fitness, drug
tolerance, genome size), and this was mediated, in part, by parental strain fitness in the
evolutionary environment.

DISCUSSION

The adaptation to antimicrobial drugs by microbial pathogens is inherently an
evolutionary process that relies upon beneficial genetic mutations. To examine the
influence of genetic background on adaptation in drug, we evolved 20 diverse C.
albicans isolates (240 replicates in total) for 100 generations in 1 �g/ml fluconazole. The
majority of replicates rapidly increased in fitness in the evolutionary environment, in a
manner that correlated inversely with parental fitness. Accordingly, the majority of
replicates from strains with parental drug susceptibility (measured as MIC50) below
1 �g/ml fluconazole increased MIC50 to the evolutionary drug level of 1 �g/ml. Only 10
replicates from five backgrounds increased in drug resistance beyond the evolutionary
drug level, however. In contrast, changes in drug tolerance were much more common
with replicates both increasing and decreasing in tolerance. These changes in tolerance
may be due to pleiotropic effects from genetic changes that improve growth in the
evolutionary environment or by virtue of physiological or possible epigenetic changes.
Overall, there was little or no correlation between change in tolerance and parental
fitness or change in fitness. However, parental fitness was negatively correlated with
the variance in tolerance among evolved replicates, and the variance in evolved fitness
was also negatively correlated with the variance in evolved genome size.

The negative correlation between parental fitness and the improvement in fitness
and that between parental fitness and the variation among replicates in fitness, drug
tolerance, and genome size are both consistent with predictions from Fisher’s abstract
geometric model (49, 50). These results among very diverse parental strains are similar
to the pattern of diminishing returns for fitness seen in bacteriophage (51) and
Escherichia coli (52) and are consistent with the negative correlation between parental
fitness and the rate of adaptation in strains that differ by many mutations (53) and in
strains that differ by only one or a few beneficial (54, 55) or deleterious (56) mutations.

Only a small number of replicates increased MIC50 to a drug level above the
evolutionary environment. From the raw (optical density) data for specific replicates
from A3, A8, A17, and A19 (parental MIC50 of all four is �1 �g/ml), MIC50 clearly
increased beyond 1 �g/ml (see Fig. S1 in the supplemental material), indicating that
these isolates acquire resistance to a higher drug concentration. Conversely, replicates
from strain A20 (parental MIC50 � 4 �g/ml) uniformly improved their fitness at 1 �g/ml
fluconazole, yet had reduced fitness at 4 �g/ml fluconazole, indicative of a cost-benefit
tradeoff for fitness in lower versus higher drug concentrations of fluconazole. Other
MIC50 results require a more cautious biological interpretation and may be due to a
technical issue, rather than biological improvement. MIC50 is calculated as the drug
concentration where growth is reduced 50% relative to growth in no drug; hence,
MIC50 could increase arithmetically if growth is reduced in the absence of drug even if
growth in the presence of drug has not changed. This mathematical quirk is also why
we use growth in the lowest drug level in the denominator of the tolerance calculation:
in parental strains, we observed equivalent growth in no drug and growth in the lowest
drug level, while some evolved strains exhibited lower growth in no drug compared to
low drug. This arithmetic issue appears to have occurred for some replicates, primarily
from initially low-MIC50 parental strains (i.e., single replicates in A3 and A8 [Fig. S1]).
Replicates from strain A5 highlight how small differences in OD can influence the
calculation of MIC50: four strains have numerically increased and four have numerically
decreased MIC50, yet the actual numbers reveal only a minor separation among
replicates (Fig. S1). Visual examination of both the assay plates and graphic display of
the raw optical density values is thus required to properly interpret numerical differ-
ences in MIC50.

In bacteria, exposure to subinhibitory concentrations of antibiotics can select for de
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novo mutations that confer resistance (57–62) or provide a pleiotropic benefit alongside
existing resistance mutations (e.g., references 57 and 63 to 66). Here, consistent
patterns among strains are lacking: of the five strain backgrounds that were exposed to
a subinhibitory level of fluconazole, no significant changes were observed among
replicates from three of them (A1, A12, and A18), MIC50 decreased in all replicates from
one strain (A20), and variable, yet numerically significant, changes occurred in repli-
cates of another strain (A5). This variability in phenotypic outcomes is reminiscent of
the case in Sclerotinia sclerotiorum, a plant-pathogenic fungus, where both MIC in-
creases and decreases (and no change) were observed and no consistent relationship
was found between the change in resistance and exposure to sublethal concentrations
of five different antifungal drugs (67). Fungal strains exposed to subinhibitory drug
levels thus seem less likely than bacteria to gain an advantage at higher drug levels.
Given the possible role of aneuploidy in this process, we speculate that differences in
chromosome geometry (circular versus linear) and mechanisms that affect chromo-
some segregation may underlie these differences in the dynamics of antimicrobial
responses.

The majority of replicates from strains with parental MICs at or below the evolu-
tionary drug concentration had increased DNA content, interpreted as larger genome
size. Furthermore, changes in DNA content and changes in fitness, MIC50, or tolerance
did not correlate, consistent with the idea that if the fluconazole-exposed isolates carry
several aneuploid chromosomes, not all of them are necessarily causative of the
observed fitness increases. Exposure to fluconazole at 10 �g/ml is known to induce the
formation of “trimeras” (24), cells indicative of mitotic defects that result in aneuploidy
at higher fluconazole concentrations; trimeras also were evident when lab strain
SC5324 was exposed to 1 �g/ml fluconazole (M. Bibi and J. Berman, unpublished data).
Growth in fluconazole is expected to exert selection pressure for some aneuploids more
than others; specific genes within an aneuploid chromosome that are responsible for
increased drug resistance (26) and drug tolerance (27) also have been identified. In
many other cases, more than one gene may contribute to the phenotype (22, 27, 48,
68, 69). While we assume that changes in DNA content of a given isolate are largely due
to chromosomal aneuploidy, it is important to note that increased levels of mitochon-
drial and/or ribosomal DNA can also contribute to differences in DNA content level
detected by flow cytometry, as was recently shown to occur in different deletion
mutants within the “isogenic” collection of Saccharomyces cerevisiae deletion mutants
(70).

Given that some gene products, and the allelic ratios of the genes encoding them,
may be more limiting than others in the face of a specific stress, it is quite clear that the
degree to which a given aneuploid chromosome (or other copy number change) may
contribute to stress tolerance or resistance is likely to be affected by the genetic
background. The lack of a correlation between evolved genome size and fitness also
suggests that there is a low cost to aneuploidy in this environment (i.e., there is no clear
benefit to increased size, but there is also no clear cost). We observed lower genome
size variation in some strain backgrounds than others of a similar parental fitness (i.e.,
A4 and A9), suggesting that these strain backgrounds may be less tolerant of aneu-
ploidy than others (15). Variability in DNA content among evolved replicates was also
very low for strains with parental MIC50s of �1 �g/ml, presumably because these cells
were under little stress in the evolutionary environment (Fig. S5). Thus, we posit that
the observed variation in evolved ploidy may be integrally connected to the rapid
appearance of altered drug responses. This observation may have clinical relevance,
given that aneuploidy was common, albeit transient, in a study of sequential clinical
isolates of C. albicans. Importantly, aneuploidy appeared concomitant with major shifts
in drug resistance and yet was not retained in strains that acquired bona fide drug
resistance (13). The DNA content measurements reported here were captured directly
from populations of cells in the drug environment, and it is important to note that
aneuploid chromosomes can be lost extremely rapidly in the absence of selective
pressure (e.g., following a single overnight growth cycle in permissive medium). This

Gerstein and Berman

May/June 2020 Volume 5 Issue 3 e00480-20 msphere.asm.org 10

 on July 8, 2020 by guest
http://m

sphere.asm
.org/

D
ow

nloaded from
 

https://msphere.asm.org
http://msphere.asm.org/


highlights the important idea that aneuploidy may provide a rapid, highly frequent, yet
transient and suboptimal, genome change that facilitates adaptation until more robust
and stable genome changes (e.g., point mutations) can be acquired (71, 72).

Conclusion. Experimental evolution studies can isolate important factors that in-
fluence adaptation. Here, neither clade nor mating type zygosity significantly influ-
enced the observed evolutionary dynamics. However, genetic background did have a
significant influence on the rate and variability of adaptation, mediated in part through
parental fitness relative to the selective conditions used. Evolved changes in DNA
content were prevalent among strains with parental MICs of �1 and largely absent
from those with parental MICs above the drug level used for evolution, highlighting the
context dependence (relative to strain MIC) of drug stress. Importantly, parental fitness
was correlated with evolved variation among replicates for fitness, drug tolerance, and
genome size, thereby emphasizing that strain background can influence both the
magnitude and variation in adaptive responses to drug.

MATERIALS AND METHODS
Strains. Twenty clinical strains of Candida albicans were selected to represent the phylogenetic

diversity of the species. The strain set includes at least four strains from each of the four major clades that
encapsulate �70% of the typed C. albicans strains and spans nearly the entire known phylogenetic
diversity of the species (47, 73) as well as four commonly studied laboratory strains (SC5314, FH1,
DSY294, and T188) (Table 1). For each clade, strains with both heterozygous (MATa/MAT�) and homozy-
gous (MATa/MATa, MAT�/MAT�) mating loci were chosen. All 20 strains were initially diploid, though
strain A1 was trisomic for chr7 and A11 was trisomic for chr4. Strains were chosen blind with respect to
parental fitness or drug resistance, and we are agnostic to their potential histories of clinical drug
exposure. Full strain information including clade designation, country of origin, and infection niche was
obtained from the original manuscripts (Table 1) (74). Mating type genotype was confirmed by PCR with
MATa- and MAT�-specific primers (MATa F-TTGAAGCGTGAGAGGCAGGAG, MATa R-GTTTGGGTTCCTTCTT
TCTCATTC, MAT� F-TTCGAGTACATTCTGGTCGCG, MAT� R-TGTAAACATCCTCAATTGTACCCG). All strains
were initially streaked onto YPD and grown for 48 h at 30°C. A single colony was frozen down in 15%
glycerol and stored at �80°C. Thus, minimal genetic variation should be present in the initial freezer
stock, which we refer to throughout as the “parental strains.”

Evolution experiment. Strains were evolved in 1 �g/ml fluconazole, the epidemiological cutoff
value that denotes the upper limit of drug susceptibility (MIC50) in the wild-type C. albicans population
(5). This concentration of drug was equivalent to the parental MIC50 of three strains, above the MIC50 for
12 strains, and below the MIC50 for one highly resistant strain (MIC50 � 32 �g/ml) and four additional
strains (MIC50 � 4 �g/ml) (Table 1).

To initiate the evolution experiment, we generated 12 independent replicates from each parental
strain. Cultures were struck from frozen parental stocks onto YPD plates (1% yeast extract, 1% peptone,
2% dextrose, 1% agar; the standard lab rich medium) and incubated at 30°C overnight. For each strain,
colonies were randomly chosen by spotting each plate 12 times and picking the closest colony to each
dot. Colonies were separately inoculated into 1 ml YPD in a 96-well (3-ml) deep culture box and grown
shaking overnight at 30°C.

From the overnight cultures, we froze 100 �l from each replicate in duplicate in 50% glycerol as the
parental (t0) replicates. Overnight cultures were diluted 1:1,000 into YPD � fluconazole in two steps: first,
10 �l of the overnight culture was transferred into 990 �l YPD (a 1:100 dilution), followed by a transfer
of 20 �l diluted culture in YPD into 180 �l of YPD � 1.11 �g/ml FLC (for a final concentration of 1 �g/ml
FLC) in round-bottom microtiter plates. To minimize the likelihood of contamination and keep environ-
mental conditions similar, culture from replicates from one strain was inoculated into row A while culture
from replicates from a second strain was inoculated into row H. Plates were sealed with Breathe-Easy
sealing membranes (Sigma Z380058) and incubated statically at 30°C to mimic the static growth used for
clinical resistance assays. Plates were contained within small sealed Rubbermaid containers with wet
paper towels inside to minimize evaporation.

After 72 h, wells were mixed by pipetting, and another two-step 1:1,000 transfer was conducted into
fresh YPD � fluconazole medium. In total, 10 transfers were conducted, yielding 100 generations of
evolution [9.97 generations between transfers, log2(1,000) � 9.97 � 10 transfers � 99.7 generations].
Fifty microliters of the evolved replicate cultures was frozen in duplicate in 50% glycerol after the 10th
transfer (t10) and maintained at �80°C.

Growth in the evolutionary environment. We measured fitness in the evolutionary drug environ-
ment as optical density (A600, OD) at both 24 and 72 h. OD reflects the ability to convert nutrients from
the environment into cellular biomass. Fitness at 24 h can be thought of as a composite parameter
reflecting both lag phase and the exponential growth rate (strains that have either a lower lag or a higher
growth rate will have higher 24-h fitness) (75). Fitness at 72 h reflects growth at the time of transfer and
the amount of biomass present at stationary phase. OD at 24 h is also consistent with the clinical
assessment of drug resistance.

Clinical resistance and tolerance. The initial susceptibility and tolerance of all strains were tested
using broth microdilution liquid assays to measure the MIC (MIC50) and tolerance as supra-MIC growth
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(SMG), respectively. The liquid assay experiments followed the initial cell dilution regulations from the
clinical CLSI M27-A guidelines (1), except with YPD incubated at 30°C as the base medium and optical
density at A600 (OD) instead of a McFarland 0.5 standard to determine the initial density of cells. OD
readings were taken at 24 h after inoculation. From these data, MIC50 was numerically calculated
following the guidelines for azole drugs (1), where the MIC is defined as the lowest concentration in
which a score of 2 (prominent decrease in turbidity; approximately 50% as determined visually or
spectrophotometrically) is observed.

Four liquid broth microdilution assays were conducted on both the parental and evolved replicates,
and an additional two assays were conducted on the parental replicates. We were not able to assay all
drug concentrations in each assay due to capacity (2 time points � 20 strain backgrounds � 12
replicates). Each assay was separately initiated from culture maintained at �80°C and grown overnight
in YPD. A single measurement was taken for each replicate at each concentration of drug measured in
a given experiment (see Table S2). The median OD among experiments was determined at each
concentration of drug for each replicate. Following guidelines, the MIC50 was then calculated as the
highest concentration of drug with an OD greater than 50% of the measured OD in YPD (i.e., optical
density in medium without drug).

Tolerance was measured from the liquid assay results for each parental and evolved replicate. As in
reference 3, average growth (measured as optical density, A600) above MIC50 was divided by the
measured growth in the lowest drug level (0.06 �g/ml fluconazole) so that tolerance reflects the fraction
of realized growth and is between 0 and 1.

Tolerance �
average growth above MIC50

growth at 0.06 �g/ml fluconazole

Tolerance was assessed at 48 and 72 h. We consider evolved replicates to have increased or
decreased in tolerance when their measured tolerance was respectively above or below the range of
parental tolerance levels for t0 replicates from that strain.

Ploidy variation. Flow cytometry was performed on a BD Biosciences BD LSR II. In all cases, all
replicates from the same time point were fixed, stained, and measured in parallel. Parental replicates
were measured twice independently from the freezer stocks maintained at �80°C. Freezer cultures were
thawed and mixed, and 10 �l was added to 500 �l YPD in deep 96-well boxes, covered with a
Breathe-Easy membrane, and shaken at 200 rpm and 30°C overnight. After �16 h of growth, 20 �l of
culture was washed in 180 �l of Tris-EDTA (TE), in a round-bottom microtiter plate, pelleted, resuspended
in 20 �l TE, and fixed by adding 180 �l 95% cold ethanol.

Samples from parental (t0) replicates were grown up overnight in YPD. Samples from evolved (t10)
replicates were fixed in ethanol at the end of the last growth cycle; 50 �l of 72-h culture from t10 was
washed in 150 �l TE in a round-bottom microtiter plate, pelleted, and resuspended in 20 �l TE and 180 �l
95% cold ethanol. Ethanol-fixed cultures were stored at �20°C for up to 4 weeks. The remainder of the
protocol was identical for both time points, following the work of Gerstein et al. (76). As described in
detail in the work of Gerstein et al. (76), we used the cell cycle analysis in Flow-Jo (TreeStar) to determine
the mean G1 peak for each replicate; when more than one peak was evident, we recorded both the major
and minor G1 peaks.

Although we always used the same machine settings, subtle but significant variation is always
observed in flow cytometry data. To better compare t0 and t10 data, we performed a day-correction
based on the median G1 intensity of the A12 parental and evolved replicates, which always measured
cleanly as diploids.

Statistical methods. All analysis was conducted in the R programming language (77). To maximize
statistical power when testing the influence of mating type, we examined the effect of a heterozygous
mating type versus homozygous mating type, i.e., we combined MATa/a and MAT�/� strains.

MIC50 values were log transformed prior to statistical analysis. When parametric tests were used, all
assumptions were tested and met. When data transformations were insufficient to meet the test
assumptions, nonparametric tests were used. Spearman’s rank correlation was used when comparing the
mean responses among replicates. This correlation method uses a rank-based measure which does not
require the replicate data to come from a bivariate normal distribution. In all cases, the specific test is
indicated inline.

We used linear mixed-effect models to determine which factors influenced evolved tolerance and
genome size. Since there was significant variation in parental tolerance, the response variable in the
tolerance model was evolved � parental tolerance. In both models, the predictor variables were change
in fitness (OD at 72 h, evolved � parental), zygosity, and clade, with strain as a random effect. The models
were implemented with the lmer package (78) in the R programming language (77). Significance was
determined from the type III ANOVA table with Satterthwaite’s approximation to degrees of freedom.

Data accessibility. All data and the R code required to run the analyses and create the visualizations
are available on GitHub (https://github.com/acgerstein/C_albicans-LDE).

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, PDF file, 0.01 MB.
FIG S2, PDF file, 0.05 MB.
FIG S3, PDF file, 0.01 MB.
FIG S4, PDF file, 0.01 MB.
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