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Great moments in evolution




Adaptive traits enable one
species/population/individual
to outperform another.
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We know a lot about some of the traits that
enable adaptation.
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We know a lot about some of the traits that
enable adaptation, but much less about the
attributes of beneficial mutations.
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Many factors affect the appearance and
spread of beneficial mutations




Many factors affect the appearance and
spread of beneficial mutations

 Rate new mutations arise
» Population size (N)

* Mutation rate (p)




Many factors affect the appearance and
spread of beneficial mutations
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Many factors affect the appearance and
spread of beneficial mutations
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Many factors affect the appearance and
spread of beneficial mutations

« Rate new mutations arise AA (wt)
» Population size (N)

* Mutation rate (p)

 Mutation effect size
* Available mutations

 Dominance (h)




Use microorganisms to study adaption
‘forward’ in time.

OX174 (phage) Saccharomyces




Research Theme 1: The effect of ploidy
on adaptation
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Theme 1: The effect of ploidy on adaptation
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MSc.: PLoS Genetics (2006)




Theme 1: The effect of ploidy on adaptation

400 Unstressed Salt-stressed

Initial ploidy
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What factor(s) allowed diploid mutants to repeatedly
invade haploid populations? [Chapter 2]

Do haploids or diploids adapt faster to mildly stressful
environments? [Chapter 3]




Theme 1: The effect of ploidy on adaptation

400 Unstressed Salt-stressed

o§§§§;o§>;:§825§=2gji%§§

o=g=g=B=g-g=g=0 o Initial ploidy
® haploid
e diploid
® tetraploid

=
=
@
c
o}
Qo
£
-
Y
L
o
N
w
o
£
S
c
o}
Q)

1800 O 200 1800

Time (Generations)

What factor(s) allowed diploid mutants to repeatedly
invade haploid populations? [Chapter 2]

Do haploids or diploids adapt faster to mildly stressful
environments? [Chapter 3]




Do haploids or diploids adapt faster to
mildly stressful environments?

HAPLOIDS (one set of

chromosomes):

All mutations immediately
“seen” = shorter fixation
time.

0.0005

0.0004 1

ion

0.0003 A

0.0002
DIPLOIDS (two sets):
Theoretically twice the
mutations rate = shorter 0.0000
waiting time for mutations.
Most mutations at least partially
masked (i.e., recessive) = longer
fixation time.
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Method: evolve haploids and diploids for 200
generations in seven mildly stressful environments
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Method: evolve haploids and diploids for 200
generations in seven mildly stressful environments
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Measure competitive fitness at 50 and 200
generations

@ - common competitor

@ - population of interest




Measure the rate of adaptation for each
ploidy x environment population.
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Measure the rate of adaptation for each
ploidy x environment population
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In all environments, haploids adapted faster
than diploids.

0.0015
® haploid
® diploid
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Chapter 3: Gerstein et al. J Evol Biol (2011)




A mystery:

200 generations 1800 generations
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Why do haploids adapt faster, and why so
much variation?

* |nitial fithess

* Population size (N)

* Mutation rate (u)

* Mutation effect size
* Mutation availability

* Dominance




Why do haploids adapt faster, and why so
much variation?
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Why do haploids adapt faster, and why so
much variation?

* |nitial fitness X
* Population size (N)

* Mutation rate (u)
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Why do haploids adapt faster, and why so
much variation?
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Why do haploids adapt faster, and why so
much variation?
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Research Theme 2: Characterizing single
adaptive mutations in a eukaryote

789

1258 observed mutations

mutation counts
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115 lines, 2000 generations 48 mutations (mutagenesis)




Theme 2: Characterizing single adaptive mutations

virus (too maize (too
simple) complex)




Theme 2: Characterizing single adaptive mutations
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Theme 2: Characterizing single adaptive mutations

What is the genomic and phenotypic breadth of the
first adaptive mutations acquired in response to a
novel stressor? [Chapter 4]




Theme 2: Characterizing single adaptive mutations

What is the genomic and phenotypic breadth of the
first adaptive mutations acquired in response to a
novel stressor? [Chapter 4]

Do adaptive mutations have the same effect size in
haploids and homozygous diploids? [Chapter 5]




Theme 2: Characterizing single adaptive mutations

What is the genomic and phenotypic breadth of the
first adaptive mutations acquired in response to a
novel stressor? [Chapter 4]

Do adaptive mutations have the same effect size in
haploids and homozygous diploids? [Chapter 5]

What is the effect of zygosity on adaptive mutations?
[Chapter 6]
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Method: Isolate the first-step mutations that arise
IN response to nystatin stress.
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Method: Isolate the first-step mutations that arise
IN response to nystatin stress.
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What is the genomic and phenotypic
breadth of the first adaptive mutations?

Characterize genomic breadth by having a
really small & well-annotated genome, luck,
and magic.

@Succhmmm/ccs About Blog Download Site Map Help E)E3 b

GENOME DATABASE search our site m

Advanced Search via YeastMine

Home Analyze Sequence Function ‘Community

ERG6/YML008C Summary

\ Summary Locus History | Literature [ ‘Gene Ontology \ P \ \ E [ ‘Proten \'wm

Standard Name ERG6

Systematic Name 'YMLOOSC

Alias ISE1 . LIST. SED6 . VID1 '
Feature Type ORF, Verified

Description Detta(24)-sterol C-methy' onverts zy to fi in the ergos' biosynthetic pathway by
methylating position C-24; localized lo boln lipid particles and mitochondrial outer membrane (2, 3, 4, 5, 6 and see
Summary Paragraph)

Name D ER terol biosynthesis

Chromosomal Location ChrXI11:252890 to 251839 | ORF Map | GBrowse
Note: this feature is encoded on the Crick strand.

chrXI11:251739.,253490
252

YMLOOBC

Regulatory regions & binding sites

Genetic position: 2 cM




1) What is the genomic and phenotypic
breadth of the first adaptive mutations?

Characterize phenotypic breadth as tolerance
to the stressor (1C;).

1.4 —
1.2 —
1.0
0.8 —

0.6 —
0.4 —
0.2 —

Optical density (OD)

0.0 ? 8 o o

[ [ [
4 8 16 32

Environment (UM nystatin)



Genomic breadth - Every single line has a mutation in
the ergosterol biosynthesis pathway.
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Chapter 4: Genetics (2012)



Phenotypic breadth - Tolerance is similar among
different mutations within an ERG gene, but different
among mutations in different genes.
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Phenotypic breadth - Gene-environment interactions
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Theme 2: Characterizing single adaptive
mutations

preS2

1) What is the genomic and phenotypic breadth of the
first adaptive mutations?
- narrow genomic breadth (four genes in one
pathway)
- broad phenotypic breadth (large differences in
primary environment, gene-environment
interactions)




Theme 2: Characterizing single adaptive
mutations

preS2

1) What is the genomic and phenotypic breadth of the
first adaptive mutations?

2) Do adaptive mutations have the same effect size in
haploids and homozygous diploids?

3) What is the effect of zygosity on adaptive mutations?




Method: Make heterozygous and homozygous
diploids from haploid nystatin mutants.

Diploid homozygous
mutant

Haploid
mutant

Diploid heterozygous
mutant
Haploid
wildtype

| é: adaptive mutation




Method: Make heterozygous and homozygous
diploids from haploid nystatin mutants.
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mutant

Haploid
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Haploid
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2) Do adaptive mutations have the same effect
size in haploids and homozygous diploids?
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Nystatin adaptive mutations generally confer larger
tolerance on haploids than homozyous diploids.
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Nystatin adaptive mutations generally confer larger
tolerance on haploids than homozygous diploids.
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Theme 2: Characterizing single adaptive
mutations

preS2

2) Do adaptive mutations have the same effect size in
haploids and homozygous diploids?
- not these mutations




Theme 2: Characterizing single adaptive
mutations

preS2

1) What is the genomic and phenotypic scope of the first
adaptive mutations?

2) Do adaptive mutations have the same effect size in
haploids and homozygous diploids?

3) What is the effect of zygosity on adaptive mutations?




Method: Make heterozygous and homozygous
diploids from haploid nystatin mutants.

Diploid homozygous
mutant

Haploid
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mutant
Haploid
wildtype
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In an unstressful environment, heterozygotes generally
grow better than homozygous mutants.
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Heterozygous diploids
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Method: isolate heterozygous replicates that showed
growth in nystatin, re-sequence the known mutation locus.
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Heterozygotes are not staying heterozygous in nystatin.

(2/9/4/13)

Grown in YPD

Grown in YPD+2uM nystatin

i0/1/1/3i
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Heterozygotes are not staying heterozygous in nystatin.

. (2/9/4/13)

Grown in YPD ERG7
® ERGG6
ERG5

® ERG3

All lines have (previously seen)
homozygous secondary
Grown in YPLQ mutations in ERG3 or ERGS,
indicative of between-well
contamination.
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Rapid loss-of-heterozygosity.
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Theme 2: Characterizing single adaptive
mutations

HETEROZYGOATS

3) What is the effect of zygosity on adaptive mutations?

- Mutations tended to be less deleterious in heterozygotes
- Heterozgyotes grew stochastically under nystatin stress

- Rapid loss-of-heterozygosity of adaptive mutations

- Dominance of mutations changed between environments



Conclusions

1) Haploids adapted faster than diploids to mildly
stressful environments.
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Conclusions

2) The first acquired nystatin adaptive mutations
have a narrow genomic breadth and broad

phenotypic breadth
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Conclusions

3) The first acquired nystatin adaptive mutations
confer a larger tolerance to haploids than

homozygous diploids.
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Conclusions

4) Heterozygotes grow better than homozygous
mutants in YPD
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Conclusions

4) Heterozygotes grow better than homozygous
mutants in YPD, yet must become homozygous

to grow under nystatin stress.
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