Experimental design

Solveig Mjelstad Olafsrud
Introduction to Microarray technology course
May 2011

Experimental design...

 The purpose of the experimental design is to plan the experiment in a way that makes sure it can answer your biological question

 The experimental design is documented in the experimental plan

What is an experimental plan?

 A written document explaining the purpose of the experiment, and how it should be performed

 Think of the experimental plan as answering the old journalists requirements of 5 Ws and 1 H: who, what, when, where, why and how

Biological aspects (1)

- What is your hypothesis or question?
 - ✓ Does the samples reflect this?
- What else is known beforehand on the topic?
 - ✓ Expression levels on known interesting genes available?
- What samples are available?
 - ✓ More samples at a later time?
 - ✓ All biopsies shold be taken from the same part of the tissue!
 - ✓ Do you have enough RNA from each sample or is pooling of samples required?

Biological aspects (2)

Choose the right model system

- Comparing the right things
 - ✓ Does the cell type express the genes of interest?
 - ✓ Make sure there are no confounding effects

Biological aspects (3)

Replicates

- ✓ How large differences are you looking for?
- ✓ What is the expected expression difference of targeted biology in these samples?
- ✓ Will "no change" be a desired significant result?
- Biological vs technical replicates
 - ✓ Use biologic replicates to answer biological questions, and technical replicates to answer technical questions
 - ✓ What is a biological replicate?
 - Are cell cultures that originates from the same biological source biological or technical replicates?

Technical aspects (1)

- Choice of platform
 - ✓ Closely linked to biological question
 - ✓ Should be decided upon before doing the detailed planning of sampling and extraction
 - ✓ One channel vs two channel?
 - One channel one array one sample
 - Two channel one array two samples
 - ✓ Natural pairing between samples to be compared?
 - ✓ Make sure key genes are on the array!

Technical aspects (2)

- Additional questions for two channel platform:
 - ✓ Are the samples naturally paired?
 - Before and after treatement?
 - ✓ Direct comparison vs indirect?
 - ✓ Dye swaps?
 - ✓ Common reference design
 - Representable, independent RNA
 - Dye swaps strongly recommended
 - More noisy
 - More flexible

Technical aspects (3)

- Aviod systematic errors
 - ✓ Technical noise added to experiment at each step
 - ✓ Ideal: each step, one person, one protocol one day
 - ✓ Important to identify these steps in order to be able to control them
 - Know your batches!
 - ✓ Sample groups should be balanced across the batches
 - ✓ Randomize the order of treatement within a batch
 - ✓ Use the same batch of arrays and reagents within an experiment
- Plan biological replicates
 - ✓ Statistical significance of findings
 - ✓ Choose results to validate

Physical aspects

- Limitations to the equipment
 - ✓ What is the limiting point?
- Get to know your bathces
 - ✓ How many samples are possible to do at the same time at the different steps?
- How many people are/should be involved?
 - ✓ Who does what?

Economical aspects

- What is the budget?
 - ✓ Experimental costs
 - ✓ Analysis costs
 - ✓ Time costs!
- Pilot necessary?
 - ✓ Plan to balance batch effect if pilot runs shoud be used in final study
- Prioritize some groups/contrasts, and run more biological replicates?

General strategy

- For each step to control for systematic bias:
 - ✓ Distribute the biological groups systematically in a balanced fashion: for two groups of equal size, every second from each group
 - ✓ Divide it into roughly equal size batches limited by your capacity for the step
- Tip: In excel (or similar program) colour code the sample names by biological group and the column next to it by batch
- Randomization and balancing with respect to biology of interest: Possible to separate technical variation from biological variation

How to order

Bad

A1

A2

A3

A4

A5

B1

B2

B3

B4

B5

Better

A1

B1

A2

B2

A3

B3

A4

B4

A5

B5

Best

A1

B4

A3

B2

A2

B3

A5

B1

A4

B5

Experimental plan: an example

	Biology	
	A1	
	A2	
	A3	
	A4	
	A5	
	A6	
	B1	
	B2	
	В3	
	B4	
	B5	
	B6	
	C1	
	C2	
	C3	
	C4	
	C5	
Osl Uni	C6	•
Norwegiar	Radium Hospital	,

Biology	Sampling order
A1	1
B4	2
C2	3
A3	4
В6	5
C4	6
A5	7
B2	8
C6	9
A2	10
В3	11
C1	12
A4	13
B5	14
C3	15
A6	16
B1	17
C5	18

Biology	Sampling order	Extraction order
A2	10	1
В6	5	2
C1	12	3
A5	7	4
B5	14	5
C6	9	6
A6	16	7
B4	2	8
C 5	18	9
A3	4	10
C3	15	11
B2	8	12
A4	13	13
C4	6	14
B1	17	15
A1	1	16
В3	11	17
C2	3	18

Batch effect: an example (1)

Samples labeled according to biology

Batch effect: an example (2)

Samples labeled according to labelling date

Summary

- Plan ahead!
- Randomization and balancing
- Write it down in an Experimental plan
- Follow the experimental plan!

Practical exercise 1

- You have 16 animals, 8 treated (T1-8) and 8 controls (C1-8)
- Your sampling capacity is 5 animals per day
- In what order will you do the sampling?

Practical exercise 2

- 16 samples, 8 treated(T1-T8), 8 controls (C1-C8)
- Can extract 12 samples at the same time because of centrifuge capacity

How would you organize the extraction?

Practical exercise 3

- The same samples will be hybridized to the arrays, one samle per array
- You have 20 arrays available, 12 from batch A,
 8 from batch B
- How will you assign the samples to arrays?

