
Stat7350: Plotting with ggplot2 (lesson 1)
AC Gerstein
2019-03-05

Learning Objectives

• Produce scatter plots, boxplots, and timeseries plot using ggplot.
• Describe what faceting is and apply faceting in ggplot.
• Modify the aesthetics of an existing ggplot plot (including axis labels and color).
• Build complex and customized plots from data in a data frame.

Pre-analysis workflow: packages & data prep

Folders

We are going to use a consistent workflow throughout this course. Part of that will involve organizing files in
a consistent manner. Before we begin, you should make sure you have the following folders in the project
directory: * data * data_output * scripts * fig_output * other

Packages

Note that ggplot2 is include in the metapackage tidyverse. If you have not previously loaded these libraries
you will need to use install.packages() to do so before running this code.
library(tidyverse)
library(gridExtra)

##
Attaching package: 'gridExtra'

The following object is masked from 'package:dplyr':
##
combine

Load Data

Today we are going to use data from the Portal Project Teaching Database. The data is a time-series
for a small mammal community in southern Arizona. This is part of a project studying the effects of
rodents and ants on the plant community that has been running for almost 40 years. The rodents are
sampled on a series of 24 plots, with different experimental manipulations controlling which rodents are
allowed to access which plots. For more information see http://esapubs.org/archive/ecol/E090/118/ and
https://datacarpentry.org/ecology-workshop/data/.

The dataset is stored as a comma separated value (CSV) file. Each row holds information for a single animal,
and the columns represent:

1

http://esapubs.org/archive/ecol/E090/118/
https://datacarpentry.org/ecology-workshop/data/

Table 1: Data dictionary.

Column Description
record_id Unique id for the observation
month month of observation
day day of observation
year year of observation
plot_id ID of a particular plot
species_id 2-letter code
sex sex of animal (“M”, “F”)
hindfoot_length length of the hindfoot in mm
weight weight of the animal in grams
genus genus of animal
species species of animal
taxon e.g. Rodent, Reptile, Bird, Rabbit
plot_type type of plot

We are going to use the R function download.file() to download the CSV file that contains the survey data
from figshare, and we will use read_csv() to load into memory the content of the CSV file as an object of
class data.frame. Inside the download.file command, the first entry is a character string with the source URL
(“https://ndownloader.figshare.com/files/2292169”). This source URL downloads a CSV file from figshare.
The text after the comma (“data/portal_data_joined.csv”) is the destination of the file on your local machine.
You’ll need to have a folder on your machine called “data” where you’ll download the file. So this command
downloads a file from figshare, names it “portal_data_joined.csv,” and adds it to a preexisting folder named
“data.”
download.file(url="https://ndownloader.figshare.com/files/2292169",

destfile = "data/portal_data_joined.csv")

Then load the data and save it as surveys. Remember that read_csv will save as a tibble.
surveys <- read_csv("data/portal_data_joined.csv")

Parsed with column specification:
cols(
record_id = col_double(),
month = col_double(),
day = col_double(),
year = col_double(),
plot_id = col_double(),
species_id = col_character(),
sex = col_character(),
hindfoot_length = col_double(),
weight = col_double(),
genus = col_character(),
species = col_character(),
taxa = col_character(),
plot_type = col_character()
)
surveys

A tibble: 34,786 x 13
record_id month day year plot_id species_id sex hindfoot_length
<dbl> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <dbl>

2

https://ndownloader.figshare.com/files/2292169

1 1 7 16 1977 2 NL M 32
2 72 8 19 1977 2 NL M 31
3 224 9 13 1977 2 NL <NA> NA
4 266 10 16 1977 2 NL <NA> NA
5 349 11 12 1977 2 NL <NA> NA
6 363 11 12 1977 2 NL <NA> NA
7 435 12 10 1977 2 NL <NA> NA
8 506 1 8 1978 2 NL <NA> NA
9 588 2 18 1978 2 NL M NA
10 661 3 11 1978 2 NL <NA> NA
... with 34,776 more rows, and 5 more variables: weight <dbl>,
genus <chr>, species <chr>, taxa <chr>, plot_type <chr>

Tidy the data

In preparation for plotting, we are going to prepare a cleaned up version of the data set that doesn’t include
any missing data.

Let’s start by removing observations of animals for which weight and hindfoot_length are missing, or the sex
has not been determined:
surveys_complete <- surveys %>%

filter(!is.na(weight), # remove missing weight
!is.na(hindfoot_length), # remove missing hindfoot_length
!is.na(sex)) # remove missing sex

CHALLENGE

How many observations were removed above?

Because we are interested in plotting how species abundances have changed through time, we are also going
to remove observations for rare species (i.e., that have been observed less than 50 times). We will do this in
two steps: first we are going to create a data set that counts how often each species has been observed, and
filter out the rare species; then, we will extract only the observations for these more common species:
Extract the most common species_id
species_counts <- surveys_complete %>%

count(species_id) %>%
filter(n >= 50)

Only keep the most common species
surveys_complete <- surveys_complete %>%

filter(species_id %in% species_counts$species_id)

Surveys_complete should have 30463 rows and 13 columns.

Now that our data set is ready, we can save it as a CSV file in our data_output folder.
write_csv(surveys_complete, path = "data_output/surveys_complete.csv")

3

Plotting with ggplot2

ggplot2 is a plotting package that makes it simple to create complex plots from data in a data frame. It
provides a more programmatic interface for specifying what variables to plot, how they are displayed, and
general visual properties. Therefore, we only need minimal changes if the underlying data change or if we
decide to change from a bar plot to a scatterplot. This helps in creating publication quality plots with
minimal amounts of adjustments and tweaking.

ggplot2 functions like data in the ‘long’ format, i.e., a column for every dimension, and a row for every
observation. Well-structured data will save you lots of time when making figures with ggplot2.

ggplot graphics are built step by step by adding new elements. Adding layers in this fashion allows for
extensive flexibility and customization of plots.

To build a ggplot, we will use the following basic template that can be used for different types of plots:

ggplot(data = <DATA>, mapping = aes(<MAPPINGS>)) + <GEOM_FUNCTION>()

Use the ggplot() function and bind the plot to a specific data frame using the data argument ggplot(data =
surveys_complete)

Define a mapping (using the aesthetic (aes) function), by selecting the variables to be plotted and specifying
how to present them in the graph, e.g. as x/y positions or characteristics such as size, shape, color, etc.
ggplot(data = surveys_complete, mapping = aes(x = weight, y = hindfoot_length))

Need to add ‘geoms’ – graphical representations of the data in the plot (points, lines, bars). ggplot2 offers
many different geoms; we will use some common ones today, including: - geom_point() for scatter plots, dot
plots, etc. - geom_boxplot() for, well, boxplots! - geom_line() for trend lines, time series, etc.

Let’s compare weight and hindfoot length. Since these are both continuous variables, use the geom_point
ggplot(data = surveys_complete, mapping = aes(x = weight, y = hindfoot_length)) +

geom_point()

4

0

20

40

60

0 100 200

weight

hi
nd

fo
ot

_l
en

gt
h

Build plots iteratively

Save the base plot as variable p that we can ‘build up’ as we go
p <- ggplot(data = surveys_complete, mapping = aes(x = weight, y = hindfoot_length))
p + geom_point()

5

0

20

40

60

0 100 200

weight

hi
nd

fo
ot

_l
en

gt
h

A common workflow is to gradually build up the plot you want and re-define the object ‘p’ as you develop
“keeper” commands.

Convey species by color: MAP species_id variable to aesthetic color, add transarency (alpha) and change the
point size
p +

geom_point(alpha= (1/3), size=2, aes(color = genus))

6

0

20

40

60

0 100 200

weight

hi
nd

fo
ot

_l
en

gt
h

genus

Chaetodipus

Dipodomys

Neotoma

Onychomys

Perognathus

Peromyscus

Reithrodontomys

Sigmodon

CHALLENGE

Can you log10 transform weight?

7

0

20

40

60

10 30 100 300

weight

hi
nd

fo
ot

_l
en

gt
h

genus

Chaetodipus

Dipodomys

Neotoma

Onychomys

Perognathus

Peromyscus

Reithrodontomys

Sigmodon

Add fitted curves or lines

add a fitted curve or line
p + geom_point(alpha= (1/3), size=2, aes(color = genus)) +

geom_smooth()

`geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

8

0

20

40

60

0 100 200

weight

hi
nd

fo
ot

_l
en

gt
h

genus

Chaetodipus

Dipodomys

Neotoma

Onychomys

Perognathus

Peromyscus

Reithrodontomys

Sigmodon

Facetting: another way to exploit a factor

p + geom_point(alpha= (1/3), size=2, aes(color = genus)) +
facet_wrap(~ genus)

9

Reithrodontomys Sigmodon

Onychomys Perognathus Peromyscus

Chaetodipus Dipodomys Neotoma

0 100 200 0 100 200

0 100 200

0

20

40

60

0

20

40

60

0

20

40

60

weight

hi
nd

fo
ot

_l
en

gt
h

genus

Chaetodipus

Dipodomys

Neotoma

Onychomys

Perognathus

Peromyscus

Reithrodontomys

Sigmodon

Use dplyr::filter() to plot for just one genus
Dp <- "Dipodomys"
surveys_complete %>%

filter(genus == Dp) %>%
ggplot(aes(x = weight, y = hindfoot_length)) +
labs(title = Dp) +
geom_point(aes(colour=species))

10

20

30

40

50

60

50 100 150

weight

hi
nd

fo
ot

_l
en

gt
h

species

merriami

ordii

spectabilis

Dipodomys

Another way:
ggplot(surveys_complete %>% filter(genus == Dp),

aes(x = weight, y = hindfoot_length)) +
labs(title = Dp) +
geom_point(aes(colour=species))

11

20

30

40

50

60

50 100 150

weight

hi
nd

fo
ot

_l
en

gt
h

species

merriami

ordii

spectabilis

Dipodomys

Boxplot

We can use boxplots to visualize the distribution of weight within each species:
ggplot(data = surveys_complete, mapping = aes(x = species_id, y = weight)) +

geom_boxplot()

12

0

100

200

DM DO DS NL OL OT PB PE PF PM PP RF RM SH

species_id

w
ei

gh
t

By adding points to boxplot, we can have a better idea of the number of measurements and of their distribution:
ggplot(data = surveys_complete, mapping = aes(x = species_id, y = weight)) +

geom_boxplot(alpha = 0) +
geom_jitter(alpha = 0.3, color = "tomato")

13

0

100

200

DM DO DS NL OL OT PB PE PF PM PP RF RM SH

species_id

w
ei

gh
t

Notice how the boxplot layer is behind the jitter layer? What do you need to change in the code to put the
boxplot in front of the points such that it’s not hidden?

14

0

100

200

DM DO DS NL OL OT PB PE PF PM PP RF RM SH

species_id

w
ei

gh
t

CHALLENGE

Boxplots are useful summaries, but hide the shape of the distribution. For example, if the distribution is
bimodal, we would not see it in a boxplot. An alternative to the boxplot is the violin plot, where the shape
(of the density of points) is drawn.

• Replace the box plot with a violin plot; see geom_violin().
• Try making a new plot to explore the distribution of another variable within each species:

– Create a boxplot for hindfoot_length. Overlay the boxplot layer on a jitter layer to show actual
measurements.

– Add color to the data points on your boxplot according to the plot from which the sample was
taken (plot_id).

Plotting time series data

Let’s calculate number of counts per year for each species. First we need to group the data and count records
within each group:
yearly_counts <- surveys_complete %>%

count(year, species_id)

Time series data can be visualized as a line plot with years on the x axis and counts on the y axis:

15

ggplot(data = yearly_counts, mapping = aes(x = year, y = n)) +
geom_line()

0

250

500

750

1980 1985 1990 1995 2000

year

n

Unfortunately, this does not work because we plotted data for all the species together. We need to tell ggplot
to draw a line for each species by modifying the aesthetic function to include group = species_id:
ggplot(data = yearly_counts, mapping = aes(x = year, y = n, group = species_id)) +

geom_line()

16

0

250

500

750

1980 1985 1990 1995 2000

year

n

We will be able to distinguish species in the plot if we add colors (using color also automatically groups the
data):
ggplot(data = yearly_counts, mapping = aes(x = year, y = n, color = species_id)) +

geom_line()

17

0

250

500

750

1980 1985 1990 1995 2000

year

n

species_id

DM

DO

DS

NL

OL

OT

PB

PE

PF

PM

PP

RF

RM

SH

Look for differences between sexes by species over time. First, facet by sepcies:
ggplot(data = yearly_counts, mapping = aes(x = year, y = n)) +

geom_line() +
facet_wrap(~ species_id)

18

RM SH

PF PM PP RF

OL OT PB PE

DM DO DS NL

19801985199019952000 19801985199019952000

19801985199019952000 19801985199019952000

0
250
500
750

0
250
500
750

0
250
500
750

0
250
500
750

year

n

Then split each plot by the sex of each individual measured. To do that we need to make counts in the data
frame grouped by year, species_id, and sex:
yearly_sex_counts <- surveys_complete %>%

count(year, species_id, sex)

Now make the faceted plot by splitting further by sex using color (within a single plot):
ggplot(data = yearly_sex_counts, mapping = aes(x = year, y = n, color = sex)) +

geom_line() +
facet_wrap(~ species_id)

19

RM SH

PF PM PP RF

OL OT PB PE

DM DO DS NL

19801985199019952000 19801985199019952000

19801985199019952000 19801985199019952000

0

200

400

0

200

400

0

200

400

0

200

400

year

n

sex

F

M

Let’s change the theme to make the background white and remove the gridlines.
ggplot(data = yearly_sex_counts, mapping = aes(x = year, y = n, color = sex)) +

geom_line() +
facet_wrap(~ species_id) +
theme_bw() +
theme(panel.grid = element_blank())

20

RM SH

PF PM PP RF

OL OT PB PE

DM DO DS NL

19801985199019952000 19801985199019952000

19801985199019952000 19801985199019952000

0

200

400

0

200

400

0

200

400

0

200

400

year

n

sex

F

M

CHALLENGE

Use what you just learned to create a plot that depicts how the average weight of each species changes
through the years.

21

RM SH

PF PM PP RF

OL OT PB PE

DM DO DS NL

19801985199019952000 19801985199019952000

19801985199019952000 19801985199019952000

0
50

100
150

0
50

100
150

0
50

100
150

0
50

100
150

year

av
g_

w
ei

gh
t

The facet_wrap geometry extracts plots into an arbitrary number of dimensions to allow them to cleanly fit
on one page. On the other hand, the facet_grid geometry allows you to explicitly specify how you want
your plots to be arranged via formula notation (rows ~ columns; a . can be used as a placeholder that
indicates only one row or column).

Let’s modify the previous plot to compare how the weights of males and females have changed through time:
One column, facet by rows
yearly_sex_weight <- surveys_complete %>%

group_by(year, sex, species_id) %>%
summarize(avg_weight = mean(weight))

ggplot(data = yearly_sex_weight,
mapping = aes(x = year, y = avg_weight, color = species_id)) +

geom_line() +
facet_grid(sex ~ .)

22

F
M

1980 1985 1990 1995 2000

0

50

100

150

200

0

50

100

150

200

year

av
g_

w
ei

gh
t

species_id

DM

DO

DS

NL

OL

OT

PB

PE

PF

PM

PP

RF

RM

SH

One row, facet by column
ggplot(data = yearly_sex_weight,

mapping = aes(x = year, y = avg_weight, color = species_id)) +
geom_line() +
facet_grid(. ~ sex)

23

F M

1980 1985 1990 1995 2000 1980 1985 1990 1995 2000
0

50

100

150

200

year

av
g_

w
ei

gh
t

species_id

DM

DO

DS

NL

OL

OT

PB

PE

PF

PM

PP

RF

RM

SH

CHALLENG

Pick the plot you think is most informative and improve it: change the axes labels, add a title, change the
font size or orientation on the x axis, change the theme.

Arranging and exporting plots

The gridExtra package allows us to combine separate ggplots into a single figure using grid.arrange():
spp_weight_boxplot <- ggplot(data = surveys_complete,

mapping = aes(x = species_id, y = weight)) +
geom_boxplot() +
xlab("Species") + ylab("Weight (g)") +
scale_y_log10()

spp_count_plot <- ggplot(data = yearly_counts,
mapping = aes(x = year, y = n, color = species_id)) +

geom_line() +
xlab("Year") + ylab("Abundance")

grid.arrange(spp_weight_boxplot, spp_count_plot, ncol = 2, widths = c(4, 6))

24

10

30

100

300

DMDODSNLOLOTPBPEPFPMPPRFRMSH

Species

W
ei

gh
t (

g)

0

250

500

750

1980 1985 1990 1995 2000

Year

A
bu

nd
an

ce

species_id

DM

DO

DS

NL

OL

OT

PB

PE

PF

PM

PP

RF

RM

SH

After creating your plot, you can save it to a file in your favorite format. The Export tab in the Plot pane in
RStudio will save your plots at low resolution, which will not be accepted by many journals and will not
scale well for posters.

Instead, use the ggsave() function, which allows you easily change the dimension and resolution of your plot
by adjusting the appropriate arguments (width, height and dpi).

Make sure you have the fig_output/ folder in your working directory.
my_plot <- ggplot(data = yearly_sex_counts,

mapping = aes(x = year, y = n, color = sex)) +
geom_line() +
facet_wrap(~ species_id) +
labs(title = "Observed species in time",

x = "Year of observation",
y = "Number of individuals") +

theme_bw() +
theme(axis.text.x = element_text(colour = "grey20", size = 12, angle = 90, hjust = 0.5, vjust = 0.5),

axis.text.y = element_text(colour = "grey20", size = 12),
text=element_text(size = 16))

ggsave("fig_output/yearly_sex_counts.png", my_plot, width = 15, height = 10)

This also works for grid.arrange() plots
combo_plot <- grid.arrange(spp_weight_boxplot, spp_count_plot, ncol = 2, widths = c(4, 6))

25

10

30

100

300

DMDODSNLOLOTPBPEPFPMPPRFRMSH

Species

W
ei

gh
t (

g)

0

250

500

750

1980 1985 1990 1995 2000

Year

A
bu

nd
an

ce

species_id

DM

DO

DS

NL

OL

OT

PB

PE

PF

PM

PP

RF

RM

SH

ggsave("fig_output/combo_plot_abun_weight.png", combo_plot, width = 10, dpi = 300)

Saving 10 x 4.5 in image

26

	Learning Objectives
	Pre-analysis workflow: packages & data prep
	Folders
	Packages
	Load Data
	Tidy the data

	Plotting with ggplot2
	Build plots iteratively
	Add fitted curves or lines
	Facetting: another way to exploit a factor
	Boxplot
	Plotting time series data

	Arranging and exporting plots

